mysql
mysql进阶
存储引擎

连接层
最上层是一些客户端和链接服务,主要完成一些类似于连接处理、授权认证、及相关的安全方案。服务器也会为安全接入的每个客户端验证它所具有的操作权限。
服务层
第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如过程、函数等。
引擎层
存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过AP和存储引擎进行通信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。
存储层
主要是将数据存储在文件系统之上,并完成与存储引擎的交互。
简介
存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎是基于表而不是基于库的,所以存储引擎也可以被称为表引擎。
mysql5.0以后默认存储引擎是InnoDB。
1 | -- 查询建表语句 |
InnoDB
InnoDB 是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB 是默认的 MySQL 引擎。
特点:
- DML 操作遵循 ACID 模型,支持事务
- 行级锁,提高并发访问性能
- 支持外键约束,保证数据的完整性和正确性
文件:
- xxx.ibd: xxx代表表名,InnoDB 引擎的每张表都会对应这样一个表空间文件,存储该表的表结构(frm、sdi)、数据和索引。
参数:innodb_file_per_table,决定多张表共享一个表空间还是每张表对应一个表空间
MyISAM
MyISAM 是 MySQL 早期的默认存储引擎。
特点:
- 不支持事务,不支持外键
- 支持表锁,不支持行锁
- 访问速度快
文件:
- xxx.sdi: 存储表结构信息
- xxx.MYD: 存储数据
- xxx.MYI: 存储索引
Memory
Memory 引擎的表数据是存储在内存中的,受硬件问题、断电问题的影响,只能将这些表作为临时表或缓存使用。
特点:
- 存放在内存中,速度快
- hash索引(默认)
文件:
- xxx.sdi: 存储表结构信息
存储引擎特点
| 特点 | InnoDB | MyISAM | Memory |
|---|---|---|---|
| 存储限制 | 64TB | 有 | 有 |
| 事务安全 | 支持 | - | - |
| 锁机制 | 行锁 | 表锁 | 表锁 |
| B+tree索引 | 支持 | 支持 | 支持 |
| Hash索引 | - | - | 支持 |
| 全文索引 | 支持(5.6版本之后) | 支持 | - |
| 空间使用 | 高 | 低 | N/A |
| 内存使用 | 高 | 低 | 中等 |
| 批量插入速度 | 低 | 高 | 高 |
| 支持外键 | 支持 | - | - |
存储引擎的选择
在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据实际情况选择多种存储引擎进行组合。
- InnoDB: 如果应用对事物的完整性有比较高的要求,在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新、删除操作,则 InnoDB 是比较合适的选择
- MyISAM: 如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不高,那这个存储引擎是非常合适的。
- Memory: 将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。Memory 的缺陷是对表的大小有限制,太大的表无法缓存在内存中,而且无法保障数据的安全性
索引
索引概述
索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。
索引的作用就相当于书的目录。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。
索引底层数据结构存在很多种类型,常见的索引结构有: B 树, B+树 和 Hash、红黑树。在 MySQL 中,无论是 Innodb 还是 MyIsam,都使用了 B+树作为索引结构。
优点:
- 使用索引可以大大加快数据的检索速度(大大减少检索的数据量), 减少 IO 次数,这也是创建索引的最主要的原因。
- 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
- 为用来排序或者是分组的字段添加索引,可以加快分组和排序的速度,降低cpu消耗
缺点:
- 建立索引需要占用物理空间
- 会降低表的增删改的效率,因为每次对表记录进行增删改,需要进行动态维护索引,导致增删改时间变长
索引的数据结构
索引的数据结构主要有B+树和哈希表,对应的索引分别为B+树索引和哈希索引。InnoDB引擎的索引类型有B+树索引和哈希索引,默认的索引类型为B+树索引。MyISAM支持B+树不支持
B-Tree

二叉树的缺点可以用红黑树来解决:
红黑树也存在大数据量情况下,层级较深,检索速度慢的问题。
为了解决上述问题,可以使用 B-Tree 结构。
B-Tree (多路平衡查找树) 以一棵最大度数(max-degree,指一个节点的子节点个数)为5(5阶)的 b-tree 为例(每个节点最多存储4个key,5个指针)

B+Tree
结构图:

演示地址:https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
与 B-Tree 的区别:
- 所有的数据都会出现在叶子节点
- 叶子节点形成一个单向链表
MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高区间访问的性能。

Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。

特点:
- Hash索引只能用于对等比较(=、in),不支持范围查询(betwwn、>、<、…)
- 无法利用索引完成排序操作
- 查询效率高,通常只需要一次检索就可以了,效率通常要高于 B+Tree 索引
存储引擎支持:
- Memory
- InnoDB: 具有自适应hash功能,hash索引是存储引擎根据 B+Tree 索引在指定条件下自动构建的
面试题
- 为什么 InnoDB 存储引擎选择使用 B+Tree 索引结构?
- 相对于二叉树,层级更少,搜索效率高
- 对于 B-Tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针也跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低
- 相对于 Hash 索引,B+Tree 支持范围匹配及排序操作
索引分类
| 分类 | 含义 | 特点 | 关键字 |
|---|---|---|---|
| 主键索引 | 针对于表中主键创建的索引 | 默认自动创建,只能有一个 | PRIMARY |
| 唯一索引 | 避免同一个表中某数据列中的值重复 | 可以有多个 | UNIQUE |
| 常规索引 | 快速定位特定数据 | 可以有多个 | |
| 全文索引 | 全文索引查找的是文本中的关键词,而不是比较索引中的值 | 可以有多个 | FULLTEXT |
在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:
| 分类 | 含义 | 特点 |
|---|---|---|
| 聚集索引(Clustered Index) | 将数据存储与索引放一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 |
| 二级索引(Secondary Index) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
演示图:


聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引
- 如果表没有主键或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索引
思考题
- 以下 SQL 语句,哪个执行效率高?为什么?
1 | select * from user where id = 10; |
答:第一条语句,因为第二条需要回表查询,相当于两个步骤。
- InnoDB 主键索引的 B+Tree 高度为多少?
答:假设一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB 的指针占用6个字节的空间,主键假设为bigint,占用字节数为8.
可得公式:n * 8 + (n + 1) * 6 = 16 * 1024,其中 8 表示 bigint 占用的字节数,n 表示当前节点存储的key的数量,(n + 1) 表示指针数量(比key多一个)。算出n约为1170。
如果树的高度为2,那么他能存储的数据量大概为:1171 * 16 = 18736;
如果树的高度为3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856。
使用规则
最左前缀法则
如果索引关联了多列(联合索引),要遵守最左前缀法则,最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。
如果跳跃某一列,索引将部分失效(后面的字段索引失效)。
联合索引中,出现范围查询(<, >),范围查询右侧的列索引失效。可以用>=或者<=来规避索引失效问题。
索引失效情况
- 在索引列上进行运算操作,索引将失效。如:
explain select * from tb_user where substring(phone, 10, 2) = '15'; - 字符串类型字段使用时,不加单引号,索引将失效。如:
explain select * from tb_user where phone = 17799990015;,此处phone的值没有加引号 - 模糊查询中,如果仅仅是尾部模糊匹配,索引不会是失效;如果是头部模糊匹配,索引失效。如:
explain select * from tb_user where profession like '%工程';,前后都有 % 也会失效。 - 用 or 分割开的条件,如果 or 其中一个条件的列没有索引,那么涉及的索引都不会被用到。
- 如果 MySQL 评估使用索引比全表更慢,则不使用索引。
SQL 提示
是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
例如,使用索引:explain select * from tb_user use index(idx_user_pro) where profession="软件工程";
不使用哪个索引:explain select * from tb_user ignore index(idx_user_pro) where profession="软件工程";
必须使用哪个索引:explain select * from tb_user force index(idx_user_pro) where profession="软件工程";
use 是建议,实际使用哪个索引 MySQL 还会自己权衡运行速度去更改,force就是无论如何都强制使用该索引。
覆盖索引&回表查询
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能找到),减少 select *。
explain 中 extra 字段含义:using index condition:查找使用了索引,但是需要回表查询数据using where; using index;:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询
如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是select *;如果在辅助索引中找聚集索引,如select id, name from xxx where name='xxx';,也只需要通过辅助索引(name)查找到对应的id,返回name和name索引对应的id即可,只需要一次查询;如果是通过辅助索引查找其他字段,则需要回表查询,如select id, name, gender from xxx where name='xxx';
所以尽量不要用select *,容易出现回表查询,降低效率,除非有联合索引包含了所有字段
面试题:一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案:select id, username, password from tb_user where username='itcast';
解:给username和password字段建立联合索引,则不需要回表查询,直接覆盖索引
前缀索引
当字段类型为字符串(varchar, text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率,此时可以只降字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
语法:create index idx_xxxx on table_name(columnn(n));
前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
求选择性公式:
1 | select count(distinct email) / count(*) from tb_user; |
show index 里面的sub_part可以看到接取的长度
单列索引&联合索引
单列索引:即一个索引只包含单个列
联合索引:即一个索引包含了多个列
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
单列索引情况:explain select id, phone, name from tb_user where phone = '17799990010' and name = '韩信';
这句只会用到phone索引字段
注意事项
- 多条件联合查询时,MySQL优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询
设计原则
- 针对于数据量较大,且查询比较频繁的表建立索引
- 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引
- 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高
- 如果是字符串类型的字段,字段长度较长,可以针对于字段的特点,建立前缀索引
- 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率
- 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价就越大,会影响增删改的效率
- 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询
锁
锁是一种常见的并发事务的控制方式。
表级锁和行级锁了解吗?有什么区别?
MyISAM 仅仅支持表级锁(table-level locking),一锁就锁整张表,这在并发写的情况下性非常差。InnoDB 不光支持表级锁(table-level locking),还支持行级锁(row-level locking),默认为行级锁。
行级锁的粒度更小,仅对相关的记录上锁即可(对一行或者多行记录加锁),所以对于并发写入操作来说, InnoDB 的性能更高。
表级锁和行级锁对比:
- 表级锁: MySQL 中锁定粒度最大的一种锁(全局锁除外),是针对非索引字段加的锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。不过,触发锁冲突的概率最高,高并发下效率极低。表级锁和存储引擎无关,MyISAM 和 InnoDB 引擎都支持表级锁。
- 行级锁: MySQL 中锁定粒度最小的一种锁,是 针对索引字段加的锁 ,只针对当前操作的行记录进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。行级锁和存储引擎有关,是在存储引擎层面实现的。
行级锁的使用有什么注意事项?
InnoDB 的行锁是针对索引字段加的锁,表级锁是针对非索引字段加的锁。当我们执行 UPDATE、DELETE 语句时,如果 WHERE条件中字段没有命中唯一索引或者索引失效的话,就会导致扫描全表对表中的所有行记录进行加锁。这个在我们日常工作开发中经常会遇到,一定要多多注意!!!
不过,很多时候即使用了索引也有可能会走全表扫描,这是因为 MySQL 优化器的原因。
InnoDB 有哪几类行锁?
InnoDB 行锁是通过对索引数据页上的记录加锁实现的,MySQL InnoDB 支持三种行锁定方式:
- 记录锁(Record Lock):也被称为记录锁,属于单个行记录上的锁。
- 间隙锁(Gap Lock):锁定一个范围,不包括记录本身。
- 临键锁(Next-Key Lock):Record Lock+Gap Lock,锁定一个范围,包含记录本身,主要目的是为了解决幻读问题(MySQL 事务部分提到过)。记录锁只能锁住已经存在的记录,为了避免插入新记录,需要依赖间隙锁。
**在 InnoDB 默认的隔离级别 REPEATABLE-READ 下,行锁默认使用的是 Next-Key Lock。但是,如果操作的索引是唯一索引或主键,InnoDB 会对 Next-Key Lock 进行优化,将其降级为 Record Lock,即仅锁住索引本身,而不是范围。
共享锁和排他锁呢?
不论是表级锁还是行级锁,都存在共享锁(Share Lock,S 锁)和排他锁(Exclusive Lock,X 锁)这两类:
- 共享锁(S 锁):又称读锁,事务在读取记录的时候获取共享锁,允许多个事务同时获取(锁兼容)。
- 排他锁(X 锁):又称写锁/独占锁,事务在修改记录的时候获取排他锁,不允许多个事务同时获取。如果一个记录已经被加了排他锁,那其他事务不能再对这条事务加任何类型的锁(锁不兼容)。
排他锁与任何的锁都不兼容,共享锁仅和共享锁兼容。
| S 锁 | X 锁 | |
|---|---|---|
| S 锁 | 不冲突 | 冲突 |
| X 锁 | 冲突 | 冲突 |
由于 MVCC 的存在,对于一般的 SELECT 语句,InnoDB 不会加任何锁。不过, 你可以通过以下语句显式加共享锁或排他锁。
1 | # 共享锁 可以在 MySQL 5.7 和 MySQL 8.0 中使用 |
意向锁有什么作用?
如果需要用到表锁的话,如何判断表中的记录没有行锁呢,一行一行遍历肯定是不行,性能太差。我们需要用到一个叫做意向锁的东东来快速判断是否可以对某个表使用表锁。
意向锁是表级锁,共有两种:
- 意向共享锁(Intention Shared Lock,IS 锁):事务有意向对表中的某些记录加共享锁(S 锁),加共享锁前必须先取得该表的 IS 锁。
- 意向排他锁(Intention Exclusive Lock,IX 锁):事务有意向对表中的某些记录加排他锁(X 锁),加排他锁之前必须先取得该表的 IX 锁。
意向锁是由数据引擎自己维护的,用户无法手动操作意向锁,在为数据行加共享/排他锁之前,InooDB 会先获取该数据行所在在数据表的对应意向锁。
意向锁之间是互相兼容的。
| IS 锁 | IX 锁 | |
|---|---|---|
| IS 锁 | 兼容 | 兼容 |
| IX 锁 | 兼容 | 兼容 |
意向锁和共享锁和排它锁互斥(这里指的是表级别的共享锁和排他锁,意向锁不会与行级的共享锁和排他锁互斥)。
| IS 锁 | IX 锁 | |
|---|---|---|
| S 锁 | 兼容 | 互斥 |
| X 锁 | 互斥 | 互斥 |
当前读和快照读有什么区别?
快照读(一致性非锁定读)就是单纯的 SELECT 语句,但不包括下面这两类 SELECT 语句:
1 | SELECT ... FOR UPDATE |
快照即记录的历史版本,每行记录可能存在多个历史版本(多版本技术)。
快照读的情况下,如果读取的记录正在执行 UPDATE/DELETE 操作,读取操作不会因此去等待记录上 X 锁的释放,而是会去读取行的一个快照。
只有在事务隔离级别 RC(读取已提交) 和 RR(可重读)下,InnoDB 才会使用一致性非锁定读:
- 在 RC 级别下,对于快照数据,一致性非锁定读总是读取被锁定行的最新一份快照数据。
- 在 RR 级别下,对于快照数据,一致性非锁定读总是读取本事务开始时的行数据版本。
快照读比较适合对于数据一致性要求不是特别高且追求极致性能的业务场景。
当前读 (一致性锁定读)就是给行记录加 X 锁或 S 锁。
当前读的一些常见 SQL 语句类型如下:
1 | # 对读的记录加一个X锁 |
事务
事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。
四大特性ACID
- 原子性(Atomicity):事务是不可分割的最小操作但愿,要么全部成功,要么全部失败
- 一致性(Consistency):事务完成时,必须使所有数据都保持一致状态
- 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行
- 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的
并发事务
| 问题 | 描述 |
|---|---|
| 脏读 | 一个事务读到另一个事务还没提交的数据 |
| 不可重复读 | 一个事务先后读取同一条记录,但两次读取的数据不同 |
| 幻读 | 一个事务按照条件查询数据时,没有对应的数据行,但是再插入数据时,又发现这行数据已经存在 |
事务原理
redo log
redo log(重做日志)是InnoDB存储引擎独有的,它让MySQL拥有了崩溃恢复能力。
比如 MySQL 实例挂了或宕机了,重启时,InnoDB存储引擎会使用redo log恢复数据,保证数据的持久性与完整性。

MySQL 中数据是以页为单位,你查询一条记录,会从硬盘把一页的数据加载出来,加载出来的数据叫数据页,会放入到 Buffer Pool 中。
后续的查询都是先从 Buffer Pool 中找,没有命中再去硬盘加载,减少硬盘 IO 开销,提升性能。
更新表数据的时候,也是如此,发现 Buffer Pool 里存在要更新的数据,就直接在 Buffer Pool 里更新。
然后会把“在某个数据页上做了什么修改”记录到重做日志缓存(redo log buffer)里,接着刷盘到 redo log 文件里。

图片笔误提示:第 4 步 “清空 redo log buffe 刷盘到 redo 日志中”这句话中的 buffe 应该是 buffer。
理想情况,事务一提交就会进行刷盘操作,但实际上,刷盘的时机是根据策略来进行的。
小贴士:每条 redo 记录由“表空间号+数据页号+偏移量+修改数据长度+具体修改的数据”组成
binlog
redo log 它是物理日志,记录内容是“在某个数据页上做了什么修改”,属于 InnoDB 存储引擎。
而 binlog 是逻辑日志,记录内容是语句的原始逻辑,类似于“给 ID=2 这一行的 c 字段加 1”,属于MySQL Server 层。
不管用什么存储引擎,只要发生了表数据更新,都会产生 binlog 日志。
那 binlog 到底是用来干嘛的?
可以说MySQL数据库的数据备份、主备、主主、主从都离不开binlog,需要依靠binlog来同步数据,保证数据一致性。

binlog会记录所有涉及更新数据的逻辑操作,并且是顺序写。
MVCC-基本概念
当前读
读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如:
select..lock in share mode(共享锁),select.for update、update、insert、delete(排他锁)都是一种当前读。
快照读
简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。
Read Committed: 每次select,都生成一个快照读。
Repeatable Read: 开启事务后第一个select语句才是快照读的地方。
Serializable: 快照读会退化为当前读。
MVCC
全称Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现
MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。
隐藏字段

undo log
回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。
当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。
而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。
这部分内容为 JavaGuide 的补充:
我们知道如果想要保证事务的原子性,就需要在异常发生时,对已经执行的操作进行回滚,在 MySQL 中,恢复机制是通过 回滚日志(undo log) 实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后再执行相关的操作。如果执行过程中遇到异常的话,我们直接利用 回滚日志 中的信息将数据回滚到修改之前的样子即可!并且,回滚日志会先于数据持久化到磁盘上。这样就保证了即使遇到数据库突然宕机等情况,当用户再次启动数据库的时候,数据库还能够通过查询回滚日志来回滚将之前未完成的事务。
undo log版本链

不同事务或相同事务对同一条记录进行修改,会导致该记录的undo log生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。
ReadView
ReadView(读视图)是快照读SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务(未提交的)id。
ReadView中包含了四个核心字段:


RC(读取已提交)
在 RC 隔离级别下的 每次select 查询前都生成一个Read View (m_ids 列表)

RR(可重复读)
在可重复读级别下,只会在事务开始后第一次读取数据时生成一个 Read View(m_ids 列表)
另外,MVCC 的实现依赖于:隐藏字段、Read View、undo log。在内部实现中,InnoDB 通过数据行的 DB_TRX_ID 和 Read View 来判断数据的可见性,如不可见,则通过数据行的 DB_ROLL_PTR 找到 undo log 中的历史版本。每个事务读到的数据版本可能是不一样的,在同一个事务中,用户只能看到该事务创建 Read View 之前已经提交的修改和该事务本身做的修改